The user who studies the tables in detail will find that the scatter in the values of  $t_p$  and  $\omega$  apparently exceeds a level compatible with even a reduced accuracy of 500 m. This fact originates in the low eccentricity of the orbits and is of no consequence when computing the satellite position. The position of the satellite at a particular epoch does not depend appreciably upon either  $t_p$  or  $\omega$  alone but depends mostly upon the argument of the latitude at the epoch. If  $t_p$  and  $\omega$  are used to the number of figures given in the tables, ignoring their apparent lack of significance, the final computed position will come out all right.

Table 3 Orbital elements of 1962  $\beta\mu$  1

| * + daye                   | 10 <sup>5</sup> e | 10 <sup>3</sup> (i-50°) | ω°               | Ω°               | N            |
|----------------------------|-------------------|-------------------------|------------------|------------------|--------------|
| t <sub>p</sub> , days      | 10 6              | Year = 1962             | w                | 14               | 7/           |
| 304.3974918                | 640               | 0                       | 312.500          | 54.400           | 0            |
| 305.0488241                | 615               | 98                      | 203.758          | 52.006           | 9            |
| 308.0461184                | 632               | 143                     | 212.173          | 41.122           | 49           |
| 311.0435306                | 637               | 144                     | 221.179          | 30.301           | 89           |
| 313.0669562                | 648               | 139                     | 227.989          | 23.014           | 116          |
| 317.0389895                | 636               | 130                     | 242.019          | 8.672            | 169          |
| 320.1115827                | 630               | 129                     | 252.337          | 357.584          | 210          |
| 327.0061046                | 628               | 128                     | 275.123          | 332.698          | 302          |
| 330.0037612                | 631               | 128                     | 285.211          | 321.881          | 342          |
| 334.0505385                | 636               | 127                     | 298.552          | 307.274          | 396          |
| 338.0223706                | 646               | 128                     | 311.613          | 292.943          | 449          |
| 341.0199277                | 654               | 129                     | 321.224          | 282.126          | 489          |
| 345.0665965                | 669               | 128                     | 334.031          | 267.525          | 543          |
| 348.0640921                | 681               | 127                     | 343.336          | 256.707          | 583          |
| 361.0277845                | 729               | 127                     | 21.479           | 209.919          | 756          |
|                            |                   | Year = 1963             |                  |                  |              |
| 2.1723327                  | 749               | 124                     | 38.855           | 187.745          | 838          |
| 6.0688138                  | 763               | 125                     | 49.694           | 173.683          | 890          |
| 8.0919432                  | 767               | 124                     | 55.113           | 166.380          | 917          |
| 10.0401550                 | 772               | 126                     | 60.393           | 159.349          | 943          |
| 21.0549804                 | 782               | 127                     | 89.927           | 119.598          | 1090         |
| 29.0725571                 | 776               | 126                     | 111.334          | 90.660           | 1197         |
| 38.0643095                 | 755               | 129                     | 135.706          | 58.212           | 1317         |
| 46.0071787                 | 729               | 129                     | 157.978          | 29.543           | 1423         |
| 53.0509960                 | 703               | 130                     | 178.415          | 4.126            | 1517         |
| 60.0200170                 | 674               | 129                     | 199.298          | 338.974          | 1610         |
| 67.0641389                 | 652               | 129                     | 221.199          | 313.557          | 1704         |
| 74.0334930                 | 636               | 128                     | 243.685          | 288.405          | 1797         |
| 77.0311392                 | 631               | 128                     | 253.717          | 277.583          | 1837         |
| 81.0029996                 | 626               | 127                     | 266.909          | 263.249          | 1890         |
| 88.1223456                 | 632               | 123                     | 290.428          | 237.561          | 1985         |
| 95.2416236                 | 647               | 122                     | 313.636          | 211.862          | 2080         |
| 98.0143516                 | 655               | 122                     | 322.474          | 201.854          | 2117         |
| 101.0868377                | 667               | 128                     | 332.274          | 190.757          | 2158         |
| 107.0818016                | 690               | 125                     | 350.766          | 169.127          | 2238         |
| 109.1050647                | 698               | 125                     | 356.828          | 161.826          | 2265         |
| 115.0998296                | 720               | 125                     | 14.366           | 140.188          | 2345         |
| 119.0713077                | 735               | 124                     | 25.731           | 125.856          | 2398         |
| 122.0686210                | 746               | 125                     | 34.164           | 115.039          | 2438         |
| 127.0141314                | 760<br>760        | 124                     | 47.815           | 97.191<br>96.37h | 2504         |
| 130.0113809                | 768               | 124                     | 55•953           | 86.374           | 2544         |
| 133.0086333<br>137.0548896 | 775<br>781        | 128<br>127              | 64.095<br>74.928 | 75·559<br>60·961 | 2584<br>2638 |
| 140.0521176                | 784               | 128                     | 82.961           | 50.145           | 2678         |
| 144.0234590                | 784               | 129                     | 93.670           | 35.810           | 2731         |
| 147.0206828                | 782               | 129                     | 101.682          | 24.994           | 2771         |
| 151.0669463                | 77 <b>7</b>       | 129                     | 112.552          | 10.390           | 2825         |
| 154.0641910                | 772               | 128                     | 120.660          | 359 • 574        | 2865         |
| 158.0355579                | 762               | 128                     | 131.496          | 345.240          | 2918         |
| 170.0247691                | 722               | 128                     | 165.074          | 301.970          | 3078         |
| 172.1229345                | 714               | 128                     | 171.210          | 294.397          | 3106         |
| .177.0686404               | 696               | 127                     | 185.820          | 276.548          | 3172         |
| 179.0919256                | 687               | 126                     | 191.991          | 269.246          | 3199         |
| 186.4357616                | 658               | 123                     | 214.695          | 242.749          | 3297         |
| 190.0328267                | 648               | 125                     | 226.229          | 229.762          | 3345         |
| 195.0537940                | 637               | 124                     | 242.632          | 211.640          | 3412         |
| 200.0747790                | 631               | 125                     | 259.123          | 193.519          | 3479.        |
| 206.0700164                | 632               | 124                     | 278.963          | 171.884          | 3559         |
| 217.1611167                | 654               | 125                     | 315.239          | 131.861          | 3707         |
| 221.0579333                | 666               | 122                     | 327.718          | 117.796          | 3759         |
| 227.0529284                | 686               | 126                     | 346.392          | 96.160           | 3839         |

The computer listings were not designed with these tables in mind, and two hand transcriptions were involved in the final preparation of the tables. There is thus a possibility of typographical error. The author will appreciate it if any apparent errors are called to his attention.

Satellite 1961  $\alpha\eta$ 1 ceased radiating shortly after the 212th day of 1962. The other satellites are still radiating (as of November 18, 1963), but their signals have been of low quality for some time. No accurate orbital elements from Doppler tracking, beyond those given in the tables, can be expected for any of the three. The tables have doubtful accuracy after about day no. 300 of 1962 for satellite 1961 of and after about day no. 200 of 1963 for 1962  $\beta\mu$ 1.

# Fission-Fragment-Caused Shear Stress in Gaseous Vortex Reactors

D. B. Harmon\* and E. M. Svaton†

Douglas Aircraft Company, Inc.,

Santa Monica, Calif.

#### Nomenclature

D= diameter of gas core containing fissionable materials, cm E= total fragment energy through 1 cm<sup>2</sup> of core boundary,

mev

 $N={
m fission}$  fragment number through 1 cm² of boundary in one direction

p= fragment momentum components perpendicular to 1 cm² of boundary, g-cm/sec-cm²

R = radius, cm

 $\frac{\overline{uv}}{\overline{uv}}$  = time-averaged tangential velocity, radial velocity product

= number density ratio of particles to that in standard air

 $\bar{\rho}$  = time-averaged density

 $\tau$  = effective shear stress, psf

 $\tau_w = \text{shear stress at vortex wall}$ 

### Introduction

ONSIDERABLE work has been performed on gaseous CONSIDERABLE WORK has been performed uses. 1-5 Throughout the work that has been performed to date, the assumption has been made that separate solutions of the hydrodynamic and nuclear reactor equations, respectively, are possible; in addition, considerable effort has been expended in computation of the energy carried across the gas core boundary by fission fragments.6 It is immediately apparent that a fission fragment has a great amount of momentum. As an adjunct to work on fission fragment energy losses, a subroutine to a computer program was included which calculated, for several different cylindrical gas cores, the momentum carried across any boundary in the core for a preset uranium content and various gas number density ratios compared to atmospheric. The results of these calculations are presented herein, along with a brief discussion of the restrictions on the calculations. The intent of this note is simply to show that fission fragments could cause significant shear stresses in gaseous core nuclear vortex reactors; no attempt is made to solve the problem of the actual shear stress.

\* Branch Chief, Propulsion Research, Advance Missile Technology, Missile and Space Systems Division.

Received May 6, 1964. Some of the results presented here were reported verbally during the discussion on Ref. 5 at the Jet Propulsion Laboratory Symposium on Gaseous Fission Reactors, Pasadena, Calif., April 27, 1962.

<sup>†</sup> Research Engineer, Propulsion Research, Advance Missile Technology; presently Research Engineer, Space Physics and Planetary Sciences, Advance Space Technology, Missile and Space Systems Division.

#### Discussion

The calculations can be made (using the program) for any given initial distribution of uranium in the vortex. In the results reported here, it has been assumed that the fission fragment number origin corresponds to a certain fraction of the uranium concentration. The uranium content distribution of Ref. 4, with a peak fissionable material concentration of 10<sup>15</sup>, has been assumed. The fission fragment travel has been computed independently as a function of gas density. The number of fragments crossing a differential area on the wall of a cylinder is computed assuming a radius of travel equal to the fission fragment path length and an infinitely long cylinder. Since the fission fragment travel is a few centimeters, this radius assumption is totally unrealistic for some of the cylinders considered.

The total energy and component of momentum perpendicular to the wall is computed by the forementioned program. Clearly, the momentum perpendicular to the wall is related to the effective shear stress which depends on the local velocity gradient and the slowing-down rate of the fission fragment. In other words, a stress similar to a turbulent Reynolds stress ( $\bar{\rho}$   $\bar{u}\bar{v}$ ) exists because of the radial travel of the fragments across the tangential velocity field usually calculated to be present in gas cores—independent of the nuclear effects.

In order to get some idea of the magnitude of the effective shear generated by the fission fragments in their travel, a maximum tangential velocity in the gas cores was assumed. A value of 2000 fps was chosen for the outer edge of the cylinder with a linear gradient assumed going to zero at the center of the cylinder. Shear stresses of the order of those shown in Fig. 1 then result. The computed data are given in Tables 1, 2, and 3. It is immediately evident that for the smaller vortices these values are very large, compared with the magnitude of shear stress that one would expect to find in such a vortex, even with highly turbulent flow.

Turbulence would greatly modify the flow distribution from that assumed. Nevertheless, the momentum carried across the flow by the large number of fission fragments

Table 1 Light fission fragments

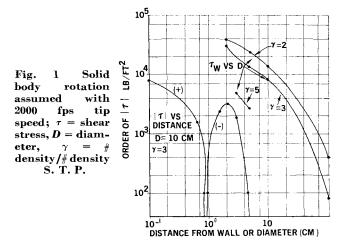

|                    | E, mev               | p     | N            | D, cm           | au     |
|--------------------|----------------------|-------|--------------|-----------------|--------|
| $\gamma = 2$       | $8.2 \times 10^{14}$ | 4 310 | 1.9 ×        | 1013 2          | 39,370 |
| -                  | $1.8 \times 10^{15}$ | 480   | $6.6 \times$ | $10^{13}$ 5     | 24,384 |
|                    | $3.5 \times 10^{15}$ | 590   | $1.2 \times$ | 1014 10         | 14,986 |
|                    | $2.0 \times 10^{15}$ | 160   | $1.0 \times$ | $10^{14}$ $100$ | 406    |
| $\gamma \approx 3$ | $3.8 \times 10^{14}$ | 240   | $1.3 \times$ | $10^{13}$ 2     | 30,480 |
| •                  | $6.8 \times 10^{14}$ | 270   | $2.4 \times$ | $10^{13}$ 5     | 13,716 |
|                    | $1.2 \times 10^{15}$ | 340   | $4.7 \times$ | 1013 10         | 8636   |
|                    | $3.8 \times 10^{14}$ | 32    | $1.8 \times$ | 1013 100        | 81     |
| $\gamma = 5$       |                      | 57    |              | 3               | 4826   |
| •                  |                      | 54    |              | 5               | 2743   |

Table 2 Heavy fission fragments

|              | E, mev               | p   | N                    | D, em | τ      |
|--------------|----------------------|-----|----------------------|-------|--------|
| $\gamma = 3$ | $1.8 \times 10^{14}$ | 200 | $1.0 \times 10^{13}$ | 2     | 25,400 |
|              | $3.4 \times 10^{14}$ | 220 | $1.7 \times 10^{13}$ | 5     | 11,760 |
|              | $5.6 \times 10^{14}$ | 260 | $3.3 	imes 10^{13}$  | 10    | 6604   |

Table 3 Light fission fragments; + is toward center

| em                 | ndary, $\it E$        | $\boldsymbol{p}$ | N                      | $\tau$ |
|--------------------|-----------------------|------------------|------------------------|--------|
|                    |                       |                  |                        |        |
| $\gamma = 3 \ 0.7$ | $-5.8 \times 10^{14}$ | -83              | $-2.13 \times 10^{13}$ | 1500   |
| 1.4                | $8.6 \times 10^{14}$  | 82               | $1.96 \times 10^{13}$  | 2300   |
| 2.1                | $1.3 \times 10^{15}$  | 140              | $4.8 \times 10^{13}$   | 3400   |
| 2.8                | $6.6 \times 10^{14}$  | 89               | $4.2 \times 10^{13}$   | 1900   |



is so great that the turbulent momentum transport is still small, compared with the fission fragment momentum transport for lower values of gas density, radius, and high velocity. It is emphasized that the pseudo-stresses given here are not those that would actually be present in the gas cores, as assumed. Rather, this simple calculational technique has been used in an attempt to estimate the order of magnitude that such stresses might take in regions of varying fragment concentration.

#### Conclusion

From the results presented, it can be concluded that uncoupling of the nuclear and hydrodynamic equations in the vortex type of fission reactors is impossible, except perhaps for large, low-velocity gradient cores. Even if a "twocylinder vortex" type of reactor is considered, it may be very important to consider the interaction effects near the outer edge of the central core, the area in which it is usually considered that fissioning material ceases to exist. In the vortex flow, it is usually assumed that the fissionable material presents a relatively sharp concentration dropoff with radius; this assumption means that a large radial fragment momentum change should exist across the tangential velocity, unless gas density were very high and fissionable material concentration large over only a small central fraction of the inner zone. Further work in this area is recommended, particularly on the analysis of the true stresses generated by the fragment travel.

## References

- <sup>1</sup> Kerrebrock, J. L. and Meghreblian, R. V., "An analysis of vortex tubes for combined gas-phase fission heating and separation of the fissionable material," Oak Ridge National Laboratory Rept. CF-57-11-3, Revision 1 (declassified February 4, 1960).
- <sup>2</sup> Rosenzweig, M. L., Lewellen, W. S., and Kerrebrock, J. L., "The feasibility of turbulent vortex containment in the gaseous fission rocket," ARS J. 31, 873–883 (1961).
- <sup>3</sup> Kerrebrock, J. L. and Lafyatis, P. G., "Analytical study of some aspects of vortex tubes for gas-phase fission heating," Oak Ridge National Laboratory Rept. CF-58-7-4 (declassified September 2, 1960).
- <sup>4</sup> Grey, J., "A gaseous core nuclear rocket utilizing hydrodynamic containment of fissionable material," ARS Preprint 848-59.
- Wahl, B. W., Strobel, G. L., and Svaton, E. M., "Radiative transfer in inhomogeneous cylindrical gas core nuclear reactors,"
  Jet Propulsion Lab. Symposium on Gaseous Fission Reactors,
  Pasadena, Calif. (April 27, 1962).
  Wahl, B. W. and E. M. Svaton, "The interaction of fission
- <sup>6</sup> Wahl, B. W. and E. M. Svaton, "The interaction of fission fragments of uranium with hydrogen, the nature of the expected radiation and some applications to gaseous core vortex systems," Douglas Aircraft Co., Inc., Santa Monica Rept. SM-38621 (October 1961).